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Abstract

In this paper, we propose ComGAN(ComparativeGAN) which allows the gener-
ator in GANs to refer to the semantics of comparative samples(e.g. real data) by
comparison. ComGAN generalizes relativistic GANs by using arbitrary archi-
tecture and mostly outperforms relativistic GANs in simple input-concatenation
architecture. To train the discriminator in ComGAN, we also propose equality
regularization, which fits the discriminator to a neutral label for equally real or
fake samples. Equality regularization highly boosts the performance of ComGAN
including WGAN while being exceptionally simple compared to existing regular-
izations. Finally, we generalize comparative samples fixed to real data in relativistic
GANs toward fake data and show that such objectives are sound in both theory
and practice. Our experiments demonstrate superior performances of ComGAN
and equality regularization, achieving the best FIDs in 7 out of 8 cases of different
losses and data against ordinary GANs and relativistic GANs.

1 Introduction

Generative Adversarial Networks(GANs)[6] train the generator G to generate fake data that follows
the distributions of real data by fooling the discriminator D which distinguishes fake data from real
data. GANs have shown promising performance in generative modeling, being able to generate
photo-realistic images[4, 11, 12]. However, they suffer from training instability stemming from the
non-stationary adversarial game[1, 4, 35], which might lead to mode collapse where the generated
samples have very few modes or complete failure, e.g., generating only random noises.

To improve stability, several works explored applying different loss functions from vanilla GAN[24]
such as least square loss[25](LSGAN), hinge loss [21](HingeGAN), and wasserstein loss[2](WGAN).
Especially, WGAN[2] minimizes the wasserstein distance induced from integral probability
metrics(IPMs)[31] which is mathematically weaker than other divergences, not causing diverg-
ing or vanishing gradients in theory. Along with WGAN, various GANs adopting losses from
IPMs(IPM-GANs)[3, 29, 30] were also claimed to improve stability upon vanilla GAN. Apart from
changing the loss function, other works regularize the discriminator to improve GANs training.
The common approaches are constraining lipschitz norm[7, 28], regularizing the input gradient
norm[14, 26], or posing invariance over data augmentation[42, 45] for better conditioning of the
discriminator. Still, applying regularization might be computationally demanding in the case of
computing input gradient[7, 14, 26]. Also, Lucic et al. [24] showed that GANs using different losses
do not consistently outperform vanilla GAN.

Instead, some previous works explored utilizing multiple samples in the discriminator, which can
be paired with any GAN losses. Jolicoeur-Martineau [9] proposed relativistic GANs where the
discriminator logit is calculated by both real and fake samples after subtracting one from the other, i.e.
C(x)− C(y) where x, y ∼ pd,g . The author claims that relativistic GANs improve training stability
by (i) reflecting prior knowledge that half of samples in mini-batch are fake and (ii) following training
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procedure in real divergence minimization and (iii) resembling IPM-GANs which are known to be
more stable than other variants. Similarly, Lin et al. [22] proposed PacGAN where the discriminator
is trained by multiple real and fake samples, matching divergence between joint distributions of
n real and fake samples. PacGAN inhibits mode-collapse due to the property of n-packed joint
distributions[22]. Similar batch-wise discrimination was also attempted in [35] to alleviate mode-
collapse.

In this paper, we propose ComparativeGAN(ComGAN) which generalizes the relativistic GANs
toward arbitrary architecture. Departing from logit-level comparison in relativistic GANs, ComGAN
allows the generator to refer to the semantics of the comparative sample(e.g. real data) when updating
fake samples, mostly outperforming relativistic GANs under simple input concatenation. While Yu
et al. [40] also proposed to employ real data as a reference in the discriminator, their training relied
on the attention mechanism, different from ComGAN which naturally includes reference samples in
loss functions. In addition, we show that relativistic GAN overlooks training terms for equally real or
fake data and propose equality regularization to include such terms. Equality regularization highly
boosts the performance of ComGAN, including WGAN and vanilla relativistic GAN. In contrast to
gradient penalty regularizations[7, 14, 26] and spectral normalization[28], equality regularization is
much more simple and easy to implement. Finally, we show that PacGAN and ComGAN are tied
for matching either packed or swapped joint distributions and derive a regularization for PacGAN
which corresponds to equality regularization in ComGAN. In our experiments, the combination of
ComGAN and equality regularization outperformed relativistic GANs and ordinary GANs in 7 out of
8 cases under various losses and data. To summarize, our contributions are as follows:

• We propose ComGAN which enables semantic comparison from relativistic GANs and demonstrate
improved performance.

• We generalize comparative samples which were fixed to real data in relativistic GANs towards fake
data and show such objective is sound in both theory and practice.

• We propose equality regularization which improves the performance of ComGAN including WGAN
while being exceptionally simple compared to existing regularizations.

• We derive a regularization objective for PacGAN corresponding to equality regularization in
ComGAN, which can train a WGAN-like objective without other regularization.

The last of this paper is organized as follows: we review related works in Section 2 and define
notations of GANs in Section 3. In Section 4, we introduce ComGAN and equality regularization and
analyze them in statistical divergences and optimal discriminators. We summarize our experimental
results in Section 5 and conclude the paper in Section 6.

2 Related Works

Generative adversarial networks GANs[6] are powerful generative models that have been
adopted in various tasks such as synthesizing photo-realistic images[4, 11, 12], super-resolution[39,
43, 44], domain translation[5, 23]. However, GANs training is known to be unstable, resulting in
mode collapse[1, 4, 35]. To resolve this, various mechanisms have been proposed such as using
different loss functions[2, 21, 25] and applying regularizations[4, 12, 26, 28, 42].

Regularizing discriminators To improve and stabilize GANs training, numerous works have
focused on regularizing the discriminator. [7] proposed gradient penalty which fits the gradient norm
of the discriminator to 1.0 to satisfy lipschitz constraints. Similarly, [26] penalizes the gradient-norm
of real data in the discriminator and [14] fits the gradient norm around real data to 1.0, which
was shown to be effective to mitigate mode-collapse. [28] proposed spectral normalization which
divides the discriminator weights by their spectral norms for capacity regularization. Instead of
relying on lipschitz constraint, consistency regularization[42, 45] imposes the discriminator output
to be consistent under different data augmentation, reducing computational overhead. Our equality
regularization in ComGAN is much more simple and easy to implement compared to gradient
penalties and spectral normalizations. Also, it is free from choosing proper data augmentation
suitable for training data compared to consistency regularization.

Employing multiple samples in discriminators Instead of employing regularizations, other works
improve GANs by modifying discriminator structures to exploit multiple samples. [9] proposed
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relativistic GANs which calculate the discriminator logit by using both real and fake samples after
subtracting one from the other. Relativistic GANs were claimed to improve training stability[9] and
have been adopted in various tasks such as super-resolution[39, 43] and deblurring[16]. Similarly, [22]
proposed PacGAN which trains a discriminator by multiple real samples and fake samples to surpass
mode-collapse using the property of joint distributions. [35] proposed mini-batch discrimination
which is similar to PacGAN except for using more specialized architecture. Our work generalizes
over relativistic GANs and permits the use of arbitrary architecture, enabling semantic comparison
to provide better learning signals. We also show the connections between relativistic GANs and
PacGAN in statistical divergences and optimal discriminators.

Employing reference samples Since our ComGAN enables semantic comparison between real
data and fake data using arbitrary architecture, the generator is able to refer to real data when updating
fake samples. Similarly, [40] proposed GANs that employ real data as a reference in a discriminator
using an attention mechanism in order to better guide the generator. However, their reference samples
are unrelated to the loss function and complicated attention mechanism thus had to be used to
combine reference samples in the training. Reference-based super-resolution(RefSR)[37, 44, 46]
also uses reference samples to synthesize an HR image from an LR image, given the information
from a reference image(e.g. similar scenes). In RefSR, such information is directly synthesized
to the generator in various ways, e.g., style transfer[44], warping[46], deformable convolution[37]
while ComGAN indirectly leverages reference samples by comparison in the discriminator. Finally,
in text generation, [47] proposed self-improvement which trains the generator using reinforcement
learning by rewarding the fake sentences that are better than previously generated ones and the other
way around for worse sentences. Self-improvement was claimed to solve reward sparsity issues
and prevent mode collapse[47]. In fact, self-improvement is equivalent to employing fake data as a
reference in ComGAN and we expect that ComGAN using fake data would have similar advantages.

3 Background

3.1 Generative adversarial networks

GANs training involves an adversarial game between two models, the discriminator Dψ and the
generatorGθ, which are neural networks parameterized by ψ and θ. We express the training objectives
of D and G as follows(we omitted the expression of ψ and θ for simplicity):

LD(min) = Ex∼pd [f1(C(x))] + Ex∼pg [f2 (C(x))] (1)

LG(min) = Ex∼pd [g1(C(x))] + Ex∼pg [g2(C(x))] (2)

where C(x) denotes a discriminator logit function which corresponds to a pre-activation value of
the discriminator1, i.e. D(x) = A(C(x)) for output activation A(·), and f1, f2, g1, g2 are scalar
to scalar functions depending on the loss function applied, and pd, pg, pz are real data distribution,
fake data distribution, and generator prior(e.g. gaussian) respectively. We assume that both LD and
LG are minimized unless otherwise specified by LD(max) and LG(max) which are −LD(min) and
−LG(min). By setting f1(x) = log(1 + e−x) and f2(x) = log(1 + ex), one can recover vanilla
discriminator loss used in SGAN(standard-GAN)[6], expressed by

LD = Ex∼pd [− logD(x)] + Ex∼pg [− log(1−D(x))] (SGAN)

where D(x) = σ(C(x)) and σ(·) denotes sigmoid function. In such a case, D(x) can be seen as
a probability that x is real. For the generator objective, setting g1 = −f1, g2 = −f1 and g1 = f2,
g1 = f2 respectively correspond to saturating loss and non-saturating loss[6, 9]. Under the assumption
of the optimal discriminator, GANs can also be interpreted as a divergence minimization between
real data and fake data, e.g., Jensen-Shannon divergence(JSD) in SGAN[6], f-divergence[33] or
IPMs(Integral Probability Metrics)[2, 30, 36]. Normally, IPM-GANs are known to have benefits in
stability due to the desirable properties of their metrics(e.g. weak divergence)[2, 30].

3.2 Relativistic GANs

Relativistic GANs modify the discriminator structure in GANs to improve stability[9]. Relativistic
GANs are divided into RGAN and RaGAN by using two samples or multiple samples, whose

1We also use the term “discriminator" to refer to C(x)
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discriminator objectives are given by

LD = Ex∼pd,z∼pz [f1(C(x)− C(G(z))) + f2(C(G(z))− C(x))] (RGAN)

LD = Ex∼pd [f1(C(x)− C(xf ))] + Ez∼pz [f2(C(G(z))− C(xr))] (RaGAN)

where C(xf ) = Ez∼pz [C(G(z))] and C(xr) = Ex∼pd [C(x)]. The generator losses are defined
using the same g1 and g2 in ordinary GANs. Therefore, RGAN and RaGAN are equivalent to
substituting the logit value in ordinary GANs with the value after subtracting the logit of opponent
data. Note that WGAN[2] can be seen as a special case of RGAN and RaGAN, which corresponds to
f1 = −I and f2 = I without consideration of capacity constraints(e.g. weight clipping[2], gradient
penalty[7], etc.).

4 Method

4.1 ComGAN

To introduce our method of ComGAN, we first note that the discriminator objective of RGAN can be
re-expressed by

LD = Ex,y∼pd,g [f1(C(x)− C(y))] + Ex,y∼pg,d [f2(C(x)− C(y))]

where pd,g is the joint distribution of two independent real and fake data, and pg,d is similarly
defined. A similar objective also holds for the generator. Instead of sticking to the subtraction form of
C(x)−C(y), we generalize a discriminator structure by arbitrary C(x, y), resulting in the following:

LD = Ex,y∼pd,g [f1(C(x, y))] + Ex,y∼pg,d [f2(C(x, y))] (3)

LG = Ex,y∼pd,g [g1(C(x, y))] + Ex,y∼pg,d [g2(C(x, y))] (4)

where C(x, y) is the discriminator logit function. Note that RGAN is a special case of (3) and (4),
corresponding to letting C(x, y) = φ(x) − φ(y) where φ : Rnd → R and nd is the dimension of
input data. In the case of using cross-entropy loss to train the discriminator, (3) is equal to

LD = Ex,y∼pd,g [− logD(x, y)] + Ex,y∼pg,d [− log(1−D(x, y))] (5)

where D(x, y) = σ(C(x, y)) and σ(·) denotes sigmoid function. Intuitively, training the discrim-
inator to minimize (5) tasks D(x, y) to compare the ‘reality’ of x and y in the range of 0-1 and
D(x, y) can be understood as a probability that x is more real than y (i.e. D(x, y) ≈ 1 indicates
x is more real than y and vice-versa). Motivated by this, we name GANs using equations (3) and
(4) ComGAN(ComparativeGAN). ComGAN allows the use of arbitrary discriminator structure for
C(x, y) and includes RGAN as its special case. Such property is useful since advanced neural
network architecture(e.g. attention) can be utilized to compare x and y(see Section 4.2). Meanwhile,
in SComGAN(standard-ComGAN) which employs the objective of (5), the optimal discriminator D∗
is given by

D∗(x, y) =
pd,g(x, y)

pd,g(x, y) + pg,d(x, y)

Intuitively, we see that D∗(x, y) imposes the value close to 1 if sample (x, y) has a high likelihood
of pd,g and a low likelihood of pg,d and the other way around for pg,d. The following proposition
gives a further intuition of the behavior of ComGAN.

Proposition 1. The optimal discriminator of SComGAN is equal to σ(C∗(x)− C∗(y)) where C∗ is
the optimal discriminator logit function of SGAN.

Proof. Note that the optimal discriminator of SGAN is expressed by

D∗(x) =
pd(x)

pd(x) + pg(x)
= σ

(
log

pd(x)

pg(x)

)
. ∴ C∗(x) = log

pd(x)

pg(x)

Meanwhile,

D∗(x, y) = σ

(
log

pd,g(x, y)

pg,d(x, y)

)
= σ

(
log

pd(x)

pg(x)
− log

pd(y)

pg(y)

)
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Thus, the optimal discriminator of SComGAN equals subtracting the logits of the optimal SGAN
discriminator with respect to two input samples, before applying the sigmoid function. In the case
of RGAN where C(x, y) = φ(x)− φ(y), we conclude φ∗(x) = C∗(x) + k (constant). Meanwhile,
in the case of LSGAN using label 1/-1, we observe a conflict between the optimal discriminator
given by D∗(x, y) =

pd,g(x,y)−pg,d(x,y)
pd,g(x,y)+pg,d(x,y)

[25] and an RGAN discriminator D(x, y) = φ(x)− φ(y)(∵
A = I) since the former cannot be expressed by the latter.

In divergence minimization, ComGAN matches the divergence between pd,g and pg,d as shown in
Lemma 1.

Lemma 1. Suppose LG in (2) is equal to D(pd ‖ pg) under the optimal discriminator C∗(x). LG in
(4) defined by the same f1, f2, g1, g2 is equal to D(pd,g ‖ pg,d) under C∗(x, y).

Proof. (3) and (4) are equal to substituting pd and pg with pd,g and pg,d in (1) and (2) and pd,g and
pg,d are probability distributions.

Therefore, SComGAN and WComGAN minimize JSD(pd,g ‖ pg,d) and W 1(pd,g ‖ pg,d)
respectively[2, 6].

4.2 Comparative sample

In ComGAN, fake samples are trained to be considered more real than real samples in the comparison
by the discriminator, aiming to increase the value of C(G(z), y) where y ∼ pd. We refer to y as
comparative sample, which is a reference employed to assist the training of G(z). We suppose
that the ‘good’ discriminator should compare two samples in high-level semantics to avoid small
details of comparative sample from affecting the update of G(z). In such aspects, the subtraction
structure of the discriminator in RGAN conducts comparison in a discriminator logit level, the
highest semantics that can be captured by the discriminator(i.e. whether to be real or fake). Although
this is desirable due to the aforementioned property, RGAN renders it impossible for the generator
to directly utilize information from comparative samples such as textures or frequent patterns.
In fact, our experiments show that simply using x and G(z) as network input by concatenation
outperforms RaGAN in SComGAN and HingeComGAN. Taking G(z) and y as the network input
might also help to alleviate the mode-collapse issue since the limited modes in G(z) would easily
be captured from the comparison to real data. Similarly, Yu et al. [40] proposed reference attention
where the attention map is computed upon real samples and is applied to the main layers of the
discriminator as a reference. Such training objective can be expressed by Ex,y∼pd,d [− logD(x, y)] +
Ex,y∼pg,d [− log(1−D(x, y))] in the case of SGAN with attention mechanism employed in D(x, y).
In this case, the network might learn to ignore a reference y since the input only differs by x and the
optimal discriminator does not change from vanilla SGAN. On the other hand, applying such attention-
based architectures in ComGAN is promising since ComGAN naturally leverages comparative
samples in the objective. In addition, ComGAN can be extended toward multiple comparative
samples(i.e. comparing a real sample to the batch of fake samples and vice-versa) in order to
broadly capture data semantics by using the discriminator C(x, x1, . . . , xn) where x is the main input
and x1 . . . xn are comparative samples. In case that C(x, x1, . . . , xn) = φ(x)− 1

n

∑n
i=1 φ(xi), we

recover RaGAN-like objective where mean logits are estimated using n samples yet other architectures
such as simply concatenating x, x1 . . . , xn for the network input would be possible.

Meanwhile, it should be noted that comparative can be generalized beyond real data as long as it can
guide G(z) to be improved upon itself. In previous work, Zhou et al. [47] proposed self-improvement,
a reinforcement learning-based text generation algorithm that rewards the generator for generating
sentences that are better than its previously generated samples, distinguished by the discriminator.
Self-improvement was claimed to address the reward scarcity issue since improving upon fake
samples is easier than improving upon real samples[47]. Employing fake data as comparative samples
in ComGAN might enjoy the same advantages, e.g., preventing gradient-saturating issues, although
the ability to refer to the semantics of real data will be lost. In the same sense, we consider using
G(z) itself as a comparative sample. From now on, we refer to ComGAN adopting fake data and the
same sample(i.e. G(z)) for comparative samples as ComFakeGAN and ComSameGAN and express
the generator objectives as follows(note that the discriminator objective remains unchanged):

LG = Ex,z∼pg,z [g1(C(x,G(z)))] + Ez,x∼pz,g [g2(C(G(z), x))] (ComFakeGAN)
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LG = Ez∼pz [g1(C(G(z), G(z)))] + Ez∼pz [g2(C(G(z), G(z)))] (ComSameGAN)
where x indicates that the training is not performed with respect to x. In the case of non-saturating
loss, i.e. g1 = f2 and g2 = f1, the objective of ComFakeGAN is equivalent to replacing the real
data part of the joint distributions in equation (3) with fake data. Since the discriminator is trained to
minimize (3) with respect to pd,g and pg,d, minimizing such an objective with respect to fake data
used in place of real data is sound. Similarly, ComSameGAN can be seen as improving G(z) upon
itself. In statistical divergences, those objectives can be analyzed as Theorem 1.
Theorem 1. Under the optimal discriminator, the following holds for derivatives of generator
objectives with respect to the generator parameter θ in saturating SComFakeGAN, non-saturating
SComFakeGAN, saturating SComSameGAN, and non-saturating SComSameGAN:

∇θLsatSComFakeGAN +∇θLnonsatSComFakeGAN = 2∇θKL(pg ‖ pd)
∇θLsatSComSameGAN = ∇θLnonsatSComSameGAN = ∇θKL(pg ‖ pd)

Proof. See Appendix A.2

Therefore, our objectives are theoretically sound being related to minimizing KL divergence. In our
experiments, ComFakeGAN using input concatenation surpassed RaGAN in SGAN and HingeGAN
and showed similar performance to RaGAN in LSGAN, performing on par with ComGAN, while
ComSameGAN failed in most cases. We speculate that the training signals given by G(z) might be
insufficient to train the same sample since the useful information not included in G(z) will not be
referred to.

4.3 Equality regularization

While the discriminator of SComGAN outputs a probability that x is more real than y, equation (5)
does not take the case that x is equally real as y into account since the training objective is confined
to x, y ∼ pd,g or x, y ∼ pg,d. To elicit more accurate training, we propose to fit D(x, y) ≈ 0.5 in
case of x, y ∼ pd,d and x, y ∼ pg,g as a form of regularization, expressed by

LD = Ex,y∼pd,g [− logD(x, y)] + Ex,y∼pg,d [− log(1−D(x, y))]

+λregEx,y∼pd,d [CE(0.5 ‖ D(x, y))] + λregEx,y∼pg,g [CE(0.5 ‖ D(x, y))]
(6)

where CE(p ‖ q) denotes cross-entropy between bernoulli distributions with a probability of p
and q and λreg controls the strength of the regularization(normally we set λreg = 1). Note that
the generator loss remains unchanged. For similar work, we account Cutmix[41] which improves
classifier training by mixing patches from different images with their labels properly interpolated.
Likewise, we perturb input (real, fake) and (fake, real) to (real, real) and (fake, fake) and impose
a label of 0.5. For losses other than cross-entropy, we train C(x, y) ≈ 0 since it corresponds to a
neutral label or decision boundary in most GANs2, resulting in

LD = Ex,y∼pd,g [f1(C(x, y))] + Ex,y∼pg,d [f2(C(x, y))]

+λregEx,y∼pd,d [‖C(x, y)‖2] + λregEx,y∼pg,g [‖C(x, y)‖2]
(7)

where ‖·‖ denotes l2 norm. We refer to newly introduced terms in (6) and (7) as equality regularization
and express ComGAN trained by (6) or (7) as ComGAN-eq.

Proposition 2. Under λreg = 1, D∗(x, y) of SComGAN-eq in (6) equals 1
2 + 1

2 (D∗(x) −D∗(y))
where D∗(x) is the optimal discriminator of SGAN. D∗(x, y) of LSComGAN-eq in (7) equals
1
2 (D∗(x)−D∗(y)) where D∗(x) is the optimal discriminator of LSGAN.

Proof. See Appendix A.3

Compared to Proposition 1, we see that SComGAN-eq corresponds to subtracting the output of
SGAN discriminator(i.e. after the sigmoid) while vanilla SComGAN subtracts the logits(i.e. prior
to the sigmoid). Interestingly, as LSComGAN-eq subtracts the output of LSGAN discriminator,
it accords with LSRGAN architecture using D(x, y) = φ(x) − φ(y). In our experiments, apply-
ing equality regularization significantly boosted performance in both RGAN and ComGAN using

2This holds in all the GAN loss we use in experiments, e.g., SGAN, HingeGAN, LSGAN with -1/1 coding,
WGAN.
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input-concatenation architectures. Especially, SRGAN-eq achieved the lowest Fréchet Inception
Distance(FID)[8] among SGAN variants in CIFAR10[15] and LSComGAN-eq achieved the lowest
FID in LSGAN variants of Tiny-ImageNet[18]. Meanwhile, in the case of using multiple comparative
samples(i.e. a batch of real samples xr and a batch of fake samples xf ), we propose to regularize
C(x, xr) ≈ 0 where x ∼ pd and C(x, xf ) ≈ 0 where x ∼ pg, asking x ∼ pd to be aligned with xr
and similarly for x ∼ pg. In RaGAN, which currently is the only algorithm that employs multiple
comparative samples, this results in the following:

LD = Ex∼pd [f1(φ(x)− Ey∼pg [φ(y)])] + Ex∼pg [f2(φ(x)− Ey∼pd [φ(x)])]

+λregEx∼pd [‖φ(x)− Ey∼pd [φ(x)]‖2] + λregEx∼pg [‖φ(x)− Ey∼pg [φ(y)]‖2].
(8)

In our experiments, RaGAN-eq defined by (8) outperformed RaGAN by large margins demonstrating
the effect of equality regularization. As WGAN can be seen as a special case of RaGAN, WGAN-GP-
eq which uses f1 = −I and f2 = I in (8) also outperformed WGAN-GP[7], achieving the lowest
FID in Tiny-ImageNet experiments. Furthermore, we show that objectives (7) and (8) can be trained
under simple f1 = −I and f2 = I , which is similar to WGAN yet without regularizing discriminator
capacity. We refer to such objectives as WComGAN-eq and WGAN-eq respectively, although the
mathematical connection to Wasserstein distance is not proven. WComGAN-eq outperformed both
WComGAN-GP and WComGAN-GP-eq and WGAN-eq obtained the lowest FID of 24.86 in our
CIFAR10 experiments. Finally, we show that LSRGAN and LSRaGAN indirectly include equality
and rf regularization in their objectives. To see this, note that the discriminator in RGAN is trained to
satisfy φ(x) − φ(y) ≈ 1 for x, y ∼ pd,g, which is equivalent to letting φ(x) ≈ c1 and φ(xf ) ≈ c2
for c1 − c2 = 1 and x, y ∼ pd,g . In such a case, φ(x)− Ex∼pd [φ(x)] ≈ 0 already holds for x ∼ pd.
A similar result can be derived for LSRaGAN. This is also supported by our experiments where
LSRaGAN shows notably better performance than other RaGANs and adding equality regularization
to LSRaGAN rarely affects the performance. Still, the performance of LSRaGAN was lower than
WGAN-eq.

Meanwhile, one might find (8) to be similar to LeCam regularization[38] which was introduced to
assist GANs training under limited data by matching the discriminator logit of current data to the
moving average value of the opposite data. However, (8) matches the discriminator logits to the mean
logit of the same data(not a moving average), and the mean logit Ex∼pd [φ(x)] and Ez∼pz [φ(G(z))]
are also trainable(not a constant target). In the case of fixing Ex∼pd [φ(x)] and Ez∼pz [φ(G(z))]
as constants denoted by αr and αf and assuming αr = −αf in the discriminator, the generator
objective of WGAN-eq becomes ( 1

2λ + αr)∆(pd ‖ pg) in optimality where ∆(P ‖ Q) denotes
LeCam divergence[19, 38](see Appendix B).

4.4 Regularizing PacGAN

Similar to ComGAN, PacGAN[22] uses multiple samples in the discriminator. We hereby show that
PacGAN is comparable to ComGAN with respect to logit operation and derive the corresponding
regularization. Firstly, the objective of PacGAN is defined by

LD = Ex1...xn∼pnd [f1(C(x1 . . . xn))] + Ez1...zn∼png [f2(C(x1 . . . xn)))] (PacGAN)

where pnd and png denote the joint distribution of n independent real and fake samples[22]. Therefore,
PacGAN matches the divergence between pnd and png while ComGAN matches pd,g and pg,d. Lin
et al. [22] showed that the higher n is, the more the generator is penalized against mode-collapse due
to the property of joint distributions. For SPacGAN, the optimal discriminator is expressed by the
sum of ordinary discriminators as Proposition 3.

Proposition 3. The optimal discriminator of SPacGAN, D∗(x1 . . . xn), is equal to σ (
∑n
i=1 C

∗(xi))
where C∗ is the optimal discriminator logit function of SGAN.

Proof. See Appendix A.4

For n = 2, this is comparable to Proposition 1 in ComGAN with respect to adding two logits
or subtracting one logit from the other. In case we let C(x1 . . . xn) =

∑n
i=1 φ(xi), deviating

from the original implementation where the discriminator uses the concatenation of x1 . . . xn as
input[22], we obtain φ∗(x) = C∗(x). Such architecture is invariant to input permutation, satisfying
C(x, y) = C(y, x) when n = 2, compared to the property of C(x, y) = −C(y, x) in RGAN.
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Motivated by equality regularization in ComGAN, we now study the objectives that pose C(x, y) ≈ 0
when x, y ∼ pd,g and x, y ∼ pg,d in PacGAN-2, which are expressed as follows for SPacGAN and
the generalized version:

LD = Ex,y∼pd,d [− logD(x, y)] + Ex,y∼pg,g [− log(1−D(x, y))]

+λregEx,y∼pd,g [CE(0.5 ‖ D(x, y))] + λregEx,y∼pg,d [CE(0.5 ‖ D(x, y))]
(9)

LD = Ex,y∼pd,d [f1(C(x, y))] + Ex,y∼pg,g [f2(C(x, y))]

+λregEx,y∼pd,g [‖C(x, y)‖2] + λregEx,y∼pg,d [‖C(x, y)‖2]
(10)

Since SPacGAN imposes a label of 1 for (real, real) and 0 for (fake, fake), it is reasonable to use the
label of 0.5 for (real, fake) and (fake, real) which are ‘half-real’. From now on, we refer to added
terms in (9) and (10) as rf regularization and PacGAN using rf regularization as PacGAN-rf.

Proposition 4. Under λreg = 1, D∗(x, y) of SPacGAN-rf in (9) equals 1
2 (D∗(x) +D∗(y)) where

D∗(x) is the optimal discriminator of SGAN. D∗(x, y) of LSPacGAN-rf in (10) equals 1
2 (D∗(x) +

D∗(y)) where D∗(x) is the optimal discriminator of LSGAN.

Proof. See Appendix A.5

Proposition 4 of PacGAN and Proposition 2 of ComGAN are closely related and the differences are
whether to sum the value of SGAN discriminators or subtract one from the other. In case of letting
C(x, y) = φ(x) + φ(x), we propose to fit C(x, xf ) ≈ 0 for x ∼ pd and xf which represents a batch
of fake samples, resulting in

LD = Ex,y∼pd,d [f1(φ(x) + φ(y)))] + Ex,y∼pg,g [f2(φ(x) + φ(y)))]

+λregEx∼pd [‖φ(x) + Ey∼pg [φ(y)]‖2] + λregEx∼pg [‖φ(x) + Ey∼pd [φ(y)]‖2].
(11)

Especially, given f1 = −I , f2 = I in (11), we obtain an objective similar to WGAN and refer to it as
WGAN-rf. In our experiments, WGAN-rf showed competitive performance to SGAN and LSGAN in
CIFAR10[15] yet its performance was generally below WGAN-eq.

In figure 1, we visualize equality regularization and rf regularization in relativistic GAN and PacGAN
using a geometric fashion inspired by [21]. Especially, we let φ(x) = 〈w,Φψ(x)〉 where Φψ
is discriminator feature extractor parameterized by ψ and w is a normal vector of the separating
hyperplane(i.e. a decision boundary)3. In RaGAN-eq, by training 〈w,Φ(x) − Ex∼pd [Φ(x)]〉 ≈ 0
where x ∼ pd, it is equal to asking Φ(x) − Ex∼pd [Φ(x)] to be orthogonal to the normal vector or
parallel to separating hyperplane, and similarly for fake data. We particularly used mean-matching
GAN for visualization, whose objective is given by

LD(max) = max
‖w‖2≤1,‖ψ‖β≤c

〈w,Ex∼pd [Φψ(x)]− Ex∼pg [Φψ(x)]〉 (12)

where c is a finite constant. Mean-matching GAN can be seen as a special case of RGAN, RaGAN, and
PacGAN using f1 = −I and f2 = I where the optimal normal vectorw∗ is given by cEx∼pd [Φ(x)]−
cEx∼pg [Φ(x)][21, 30]. As shown in Figure 1(a), equality regularization poses feature vectors to form
a parallel shape to the decision boundary in both real and fake data, which can roughly be interpreted
as pushing each feature vector toward a line that is parallel to the decision boundary(blue dotted line)
passing through the mean feature vector. Likewise, we observe that rf regularization in (11) asks
Φ(x)+Ex∼pg [Φ(x)] to be orthogonal to the normal vector in real data and similarly for fake data. As
shown in Figure 1(b) using mean-matching GAN, it is equal to encouraging Φ(x) +Ex∼pg [Φ(x)](i.e.
real features translated by the mean fake features) to lie on the decision boundary.

3If bias b in the final layer is excluded, this covers most discriminators implemented by neural networks,
although RGAN and RaGAN do not depend on b which is subtracted out.
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(a) equality regularization (b) rf regularization

Figure 1: A visualization of the proposed regularizations. (all) Empty circles(o), cross marks(x), and
filled rectangles(�) represent feature vectors of real data, fake data, and their mean feature vectors
respectively and the black solid line represents the decision boundary with respect to the normal
vector expressed by the red arrow. (a) equality regularization: real and fake data points are regularized
to the direction of the blue dotted lines, generating a parallel shape to the decision boundary. (b)
rf regularization: real data points transformed by the addition of the mean feature of fake data are
regularized toward the decision boundary.

5 Experiments

We experimented with our methods in CIFAR10 dataset[15] composed of 60000 32× 32 images(50k
for training and 10k for test) and Tiny-Imagenet dataset[18] composed of 100000 64×64 images(90k
for training and 10k for validation) using the loss functions of non-saturating SGAN[6], LSGAN[25],
HingeGAN[21], and WGAN[2]. We implemented our algorithms upon StudioGAN framework[10]
which provides the implementations of different GANs and various metrics for evaluation in order to
assess GANs under a consistent environment with minimal changes. Our implementation is publicly
available at here4. Following the basic configuration of StudioGAN, we used the deep convolutional
architecture replicated from [34] for training in CIFAR10 and used the ResNet architecture replicated
from [7] for training in Tiny-ImageNet except for WGAN which only uses ResNet architecture. For
input-concatenation architecture in ComGAN, we only modified the number of input channels and
other parts of the networks were kept the same. To see further details on network architecture, we
ask the readers to refer to [10] and our implementation. For hyperparameters, we copied the default
values of CIFAR10 training in StudioGAN and used the same values for Tiny-ImageNet experiments.
Especially, we used the batch size of 64 and learning rate of 0.0002 for both discriminators and
generators and set the discriminator to be updated twice per one generator update(i.e. nd = 2)
in SGAN and LSGAN while we set nd = 5 in HingeGAN and WGAN. We employed Adam
optimizer[13] with β1 = 0.5 and β2 = 0.999 except for WGAN in Tiny-ImageNet where we use
β1 = 0.0 for stability. We trained SGAN, LSGAN, HingeGAN, and WGAN for 100k, 100k, 50k,
and 50k steps in CIFAR10 and for 60k, 60k, 20k, and 20k steps in Tiny-ImageNet. We ran each
algorithm 4 times and aggregated average performance and deviation. We also used mixed precision
training[27] in CIFAR10 experiments apart from WGAN. For evaluations, we calculated Fréchet
Inception Distance(FID)[8] which is the feature-wise distance between real data and fake data,
Inception-score[35], Precision/Recall[17], and Density/Coverage[32] using test data in CIFAR10
and validation data in Tiny-ImageNet. Employing such various metrics for evaluation remarkably
contributes to fair comparison since the performance of the model could vary along metrics[10].

4https://github.com/rl-max/PyTorch-StudioGAN
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5.1 ComGAN experiments

We first display the performance of RaGAN with a comparison to ordinary GAN in Table 1. Note
that WGAN can be seen as the special case of RaGAN.

Table 1: RaGAN results. We report the best FID and Inception-score during training averaged by 4
runs and Precision/Recall and Density/Coverage at the best FID with their standard deviations.

Algorithms FID ↓ IS ↑ Precision ↑ Recall ↑ Density ↑ Coverage ↑
(CIFAR10)
SGAN 50.65(±4.65) 6.73(±0.34) 0.60(±0.03) 0.29(±0.03) 0.46(±0.04) 0.37(±0.04)
SRaGAN 58.99(±5.76) 6.28(±0.35) 0.57(±0.07) 0.24(±0.03) 0.42(±0.12) 0.27(±0.05)
LSGAN 47.95(±17.71) 6.71(±0.57) 0.62(±0.01) 0.38(±0.15) 0.48(±0.04) 0.39(±0.11)
LSRaGAN 34.15(±1.36) 7.55(±0.15) 0.63(±0.02) 0.51(±0.01) 0.54(±0.04) 0.50(±0.02)
HingeGAN 37.33(±1.83) 7.18(±0.26) 0.67(±0.02) 0.33(±0.01) 0.64(±0.05) 0.49(±0.02)
HingeRaGAN 46.31(±2.23) 7.23(±0.19) 0.61(±0.04) 0.33(±0.01) 0.51(±0.09) 0.38(±0.04)
WGAN-GP 33.20(±5.91) 7.07(±0.40) 0.63(±0.01) 0.57(±0.05) 0.54(±0.03) 0.49(±0.07)

(Tiny-ImageNet)
SGAN 76.94(±3.45) 6.99(±0.24) 0.49(±0.02) 0.11(±0.03) 0.33(±0.04) 0.22(±0.01)
SRaGAN 87.13(±3.17) 6.70(±0.25) 0.42(±0.05) 0.07(±0.01) 0.22(±0.05) 0.17(±0.01)
LSGAN 77.91(±2.67) 6.73(±0.19) 0.46(±0.02) 0.13(±0.02) 0.28(±0.03) 0.21(±0.02)
LSRaGAN 73.70(±4.29) 6.99(±0.29) 0.52(±0.03) 0.18(±0.01) 0.36(±0.04) 0.23(±0.02)
HingeGAN 78.46(±2.02) 7.05(±0.30) 0.48(±0.06) 0.12(±0.03) 0.31(±0.06) 0.21(±0.01)
HingeRaGAN 96.38(±5.87) 6.05(±0.26) 0.52(±0.08) 0.04(±0.02) 0.35(±0.12) 0.17(±0.03)
WGAN-GP 62.96(±1.78) 7.56(±0.21) 0.47(±0.01) 0.29(±0.02) 0.29(±0.01) 0.25(±0.01)

As shown in Table 1, applying RaGAN in SGAN and LSGAN actually deteriorates the performance
except for LSRaGAN which indirectly includes equality regularization. Also, WGAN-GP performs
reasonably well achieving the best FIDs and Recalls in both CIFAR10 and Tiny-ImageNet datasets.
In Figure 3 in Appendix D, we further show that performances of ordinary GAN and RaGAN are
reversed at the later part of training as RaGAN diverges more slowly. This quite corresponds to the
stability argument in the original paper[9]. In fact, experiments in [9] were conducted with stability
focused, reporting FIDs of different algorithms at the specific training step(100k) and FIDs averaged
over different time steps(i.e. performance variations during training).

We also show the results of ComGAN using input-concatenation architecture in Table 2.

Table 2: ComGAN using input-concatenation architecture results. Metrics were averaged by 4 runs.
Values in brackets denote performance gain over RaGAN(see Table 8 and 9 for standard deviations).

Algorithms FID ↓ IS ↑ Precision ↑ Recall ↑ Density ↑ Coverage ↑
(CIFAR10)
SComGAN 46.56(-12.43) 6.82(+0.54) 0.60(+0.02) 0.32(+0.08) 0.45(+0.03) 0.38(+0.11)
LSComGAN 76.03(+41.87) 5.14(-2.41) 0.65(+0.02) 0.22(-0.3) 0.51(-0.03) 0.25(-0.24)
HingeComGAN 37.28(-9.03) 7.46(+0.22) 0.65(+0.05) 0.34(+0.01) 0.62(+0.11) 0.49(+0.10)
WComGAN-GP 79.19(+45.99) 3.96(-3.10) 0.69(+0.06) 0.09(-0.47) 0.60(+0.06) 0.19(-0.30)

(Tiny-ImageNet)
SComGAN 75.20(-11.93) 7.57(+0.87) 0.43(+0.01) 0.13(+0.07) 0.25(+0.03) 0.20(+0.04)
LSComGAN 82.58(+8.88) 6.93(-0.06) 0.45(-0.07) 0.11(-0.07) 0.28(-0.08) 0.19(-0.03)
HingeComGAN 85.45(-10.93) 6.63(+0.58) 0.43(-0.09) 0.09(+0.05) 0.26(-0.10) 0.18(+0.01)
WComGAN-GP 154.41(+91.45) 3.49(-4.07) 0.32(-0.15) 0.01(-0.29) 0.12(-0.17) 0.06(-0.19)

In Table 2, we observe that using input concatenation architecture in ComGAN surpasses RaGAN
by significant margins in SGAN and HingeGAN while it deteriorates the performance in LSGAN
and WGAN(against WGAN-GP). Note that a such comparison might be unfavorable to ComGAN
since RaGAN uses multiple comparative samples and LSRaGAN benefits from the implicit equality
regularization effect. In fact, we show in Section 5.2 that LSComGAN with equality regularization
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outperforms LSRaGAN in Tiny-ImageNet and shows competitive performance in CIFAR10. Such
results prove the potential of applying semantic comparison in the discriminator.

Finally, we present the results of using fake data as the comparative sample in Table 3.

Table 3: ComFakeGAN using input concatenation architecture results. We denote ComFakeGAN by
FakeGAN.

Algorithms FID ↓ IS ↑ Precision ↑ Recall ↑ Density ↑ Coverage ↑
(CIFAR10)
SFakeGAN 45.55(±4.53) 6.57(±0.33) 0.63(±0.03) 0.33(±0.03) 0.51(±0.05) 0.39(±0.05)
LSFakeGAN 35.45(±1.98) 7.09(±0.15) 0.64(±0.01) 0.48(±0.02) 0.54(±0.01) 0.49(±0.04)
HingeFakeGAN 36.24(±1.72) 7.42(±0.07) 0.63(±0.02) 0.36(±0.03) 0.56(±0.05) 0.48(±0.01)
WFakeGAN-GP 75.55(±5.44) 4.20(±0.19) 0.67(±0.02) 0.12(±0.03) 0.55(±0.05) 0.21(±0.02)

(Tiny-ImageNet)
SFakeGAN 80.43(±5.57) 6.97(±0.40) 0.44(±0.05) 0.13(±0.02) 0.27(±0.04) 0.20(±0.02)
LSFakeGAN 78.63(±5.58) 6.86(±0.53) 0.49(±0.06) 0.10(±0.02) 0.33(±0.07) 0.21(±0.04)
HingeFakeGAN 82.89(±4.74) 6.70(±0.49) 0.47(±0.03) 0.09(±0.02) 0.29(±0.04) 0.20(±0.01)
WFakeGAN-GP 169.11(±23.83) 3.34(±0.22) 0.25(±0.11) 0.00(±0.00) 0.10(±0.05) 0.05(±0.02)

By comparison with Table 2, we see that ComFakeGAN performs on par with ComGAN in all
cases except for LSComFakeGAN in CIFAR10 which achieves significantly higher performance than
LSComGAN. Meanwhile, in the case of ComSameGAN, we encountered training failures in most
cases(see Table 8 in Appendix). We hypothesize that the training signal available for the generator is
limited in ComSameGAN since it is unable to utilize diverse information from different comparative
samples.

5.2 Applying regularization

We first display the results of applying equality regularization in SRGAN(standard-RGAN) and
ComGAN using input concatenation architecture under λreg = 1.0.

Table 4: ComGAN-eq results. We apply equality regularization of (6) in SComGAN-eq and equality
regularization of (7) in other algorithms. Input concatenation architecture was used except for RGAN
and λreg was set to 1.0. Values in brackets denote performance gain over ComGAN.

Algorithms FID ↓ IS ↑ Precision ↑ Recall ↑ Density ↑ Coverage ↑
(CIFAR10)
SComGAN-eq 45.71(-0.85) 6.61(-0.21) 0.64(+0.04) 0.42(+0.10) 0.53(+0.08) 0.38(+0.00)
SRGAN-eq 32.73(-24.55) 7.34(+1.02) 0.63(+0.03) 0.54(+0.29) 0.53(+0.05) 0.48(+0.18)
LSComGAN-eq 37.62(-38.40) 6.87(+1.73) 0.65(+0.00) 0.46(+0.25) 0.56(+0.05) 0.46(+0.20)
HingeComGAN-eq 28.85(-8.43) 7.57(+0.12) 0.63(-0.02) 0.55(+0.21) 0.54(-0.07) 0.53(+0.04)
WComGAN-GP-eq5 56.71(-22.48) 6.00(+2.04) 0.64(-0.05) 0.36(+0.27) 0.54(-0.05) 0.37(+0.18)
WComGAN-eq 34.92(-44.27) 7.14(+3.18) 0.61(-0.08) 0.48(+0.39) 0.50(-0.09) 0.47(+0.28)

(Tiny-ImageNet)
SComGAN-eq 77.74(+2.54) 7.05(-0.52) 0.49(+0.06) 0.15(+0.01) 0.33(+0.07) 0.21(+0.01)
SRGAN-eq 72.24(-29.08) 6.78(+0.40) 0.54(+0.16) 0.18(+0.14) 0.39(+0.18) 0.23(+0.09)
LSComGAN-eq 70.34(-12.24) 7.47(+0.54) 0.51(+0.06) 0.20(+0.09) 0.33(+0.05) 0.24(+0.05)
HingeComGAN-eq 78.70(-6.74) 6.54(-0.08) 0.47(+0.04) 0.12(+0.04) 0.28(+0.02) 0.20(+0.02)
WComGAN-GP-eq 106.64(-47.77) 5.04(+1.55) 0.33(+0.01) 0.05(+0.04) 0.16(+0.04) 0.11(+0.05)
WComGAN-eq 105.58(-48.83) 5.52(+2.03) 0.35(+0.03) 0.03(+0.02) 0.18(+0.06) 0.12(+0.06)

Table 4 shows that ComGAN-eq outperforms ComGAN by a large margin in most cases demonstrating
the effectiveness of equality regularization. We further show in Table 8 and 9 that ComGAN-eq
surpasses RaGAN in all experiments except for LSRaGAN in CIFAR10 and WGAN-GP. Especially,

5terminated at 32k step
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WComGAN-eq outperforms WComGAN-GP-eq in CIFAR10, showing competitive performance
with WGAN-GP, and performs on par with WComGAN-GP-eq in Tiny-ImageNet proving that
equality regularization can replace gradient penalty.

In the case of applying equality regularization in RaGAN, the results are given by Table 5.

Table 5: RaGAN-eq results. We apply equality regularization of (8) under λreg = 1.0 except for
WGAN-GP-eq in CIFAR10 where we use λreg = 0.1. Values in brackets denote performance gain
over RaGAN.

Algorithms FID ↓ IS ↑ Precision ↑ Recall ↑ Density ↑ Coverage ↑
(CIFAR10)
SRaGAN-eq 32.76(-26.23) 7.52(+1.24) 0.62(+0.04) 0.56(+0.32) 0.52(+0.10) 0.48(+0.21)
LSRaGAN-eq 31.16(-3.00) 7.64(+0.09) 0.62(-0.01) 0.58(+0.07) 0.55(+0.01) 0.52(+0.03)
HingeRaGAN-eq 25.06(-21.25) 7.93(+0.70) 0.66(+0.05) 0.57(+0.24) 0.64(+0.13) 0.61(+0.22)
WGAN-GP-eq 26.96(-6.24) 7.76(+0.69) 0.65(+0.02) 0.60(+0.04) 0.59(+0.05) 0.57(+0.08)
WGAN-eq 24.86(-8.35) 7.90(+0.83) 0.65(+0.02) 0.58(+0.02) 0.62(+0.09) 0.62(+0.13)

(Tiny-ImageNet)
SRaGAN-eq 69.06(-18.07) 7.17(+0.48) 0.56(+0.14) 0.20(+0.13) 0.38(+0.16) 0.25(+0.08)
LSRaGAN-eq 74.29(+0.59) 6.87(-0.12) 0.52(+0.00) 0.16(-0.01) 0.33(-0.03) 0.22(+0.00)
HingeRaGAN-eq 82.80(-13.58) 6.10(+0.05) 0.50(-0.02) 0.13(+0.10) 0.30(-0.05) 0.20(+0.03)
WGAN-GP-eq6 57.18(-5.78) 8.23(+0.67) 0.49(+0.02) 0.38(+0.09) 0.32(+0.03) 0.29(+0.04)
WGAN-eq 85.72(+22.77) 6.04(-1.52) 0.51(+0.04) 0.11(-0.19) 0.31(+0.02) 0.19(-0.06)

Table 5 demonstrates that applying equality regularization to RaGAN significantly improves the
performance apart from LSRaGAN. This corresponds to the fact that LSRaGAN indirectly includes
equality regularization in the objective. RaGAN-eq also outperforms ordinary GAN by a significant
margin except for HingeGAN in Tiny-ImageNet(see Table 8 and 9). Especially, the lowest FIDs in
CIFAR10 and Tiny-ImageNet are respectively achieved by WGAN-eq and WGAN-GP-eq. WGAN-
eq also outperforms WGAN-GP-eq in CIFAR10. We thus confirm that equality regularization renders
it possible for ComGAN and RaGAN to be trained under the simplest loss of f1 = −I and f2 = I .
For the value of λreg , we observed that simply using 1.0 was sufficient in most experiments except for
WGAN-GP-eq in CIFAR10 where λreg = 1.0 led the discriminator to collapse to constant output due
to strong regularization, which was addressed by setting λreg = 0.1. Finally, in Figure 2, we show the
training curves of RaGAN and RaGAN-eq in CIFAR10, where we observe the stable performance of
equality regularization, outperforming RaGAN throughout the whole training apart from LSRaGAN.

(a) SRaGAN (b) LSRaGAN (c) HingeRaGAN (d) WGAN-GP

Figure 2: FID and Coverage curves of RaGAN(orange) and RaGAN-eq(blue) in CIFAR10 dataset.

We also experimented on WGAN-rf which applies rf regularization in PacGAN under C(x, y) =
φ(x) + φ(y) and f1 = −I and f2 = I as shown in Table 6.

6terminated at 18k step
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Table 6: WGAN-rf results. We apply equality regularization of (11) under λreg = 1.0. (C) and (T)
denote experiments in CIFAR10 and Tiny-ImageNet.

Algorithms FID ↓ IS ↑ Precision ↑ Recall ↑ Density ↑ Coverage ↑
WGAN-rf(C) 46.46(±2.25) 6.54(±0.20) 0.61(±0.02) 0.29(±0.01) 0.48(±0.03) 0.35(±0.03)
WGAN-rf(T) 106.27(±4.45) 5.65(±0.20) 0.41(±0.10) 0.03(±0.01) 0.24(±0.10) 0.13(±0.02)

From Table 6, we conclude that WGAN-rf is solely trainable without other regularization such as
gradient penalty, attaining FID close to vanilla SGAN and LSGAN in CIFAR10 experiments yet the
performance is still worse than WGAN-eq. We surmise that more experiments would be required to
fairly compare rf-regularization and equality regularization.

Meanwhile, since restricting the capacity of discriminators has resulted in better performance in most
GANs[4, 20, 28, 42], one might think that equality regularization performs well because of the same
reason. To test such an argument, we apply equality regularization in ordinary GANs and present
results in Table 7.

Table 7: GAN-eq results. We apply equality regularization of (8) under λreg = 1.0. The results of
CIFAR10 and Tiny-ImageNet are respectively shown in the upper rows and the lower rows. Values in
brackets denote performance gain over ordinary GANs.

Algorithms FID ↓ IS ↑ Precision ↑ Recall ↑ Density ↑ Coverage ↑
SGAN-eq 34.74(-15.92) 7.31(+0.58) 0.63(+0.03) 0.50(+0.21) 0.53(+0.07) 0.48(+0.10)
HingeGAN-eq 54.09(+16.76) 5.73(-1.45) 0.60(-0.07) 0.34(+0.01) 0.47(-0.17) 0.30(-0.20)

SGAN-eq 80.58(+3.64) 6.43(-0.56) 0.49(+0.00) 0.14(+0.02) 0.29(-0.04) 0.20(-0.01)
HingeGAN-eq 95.55(+17.09) 5.95(-1.10) 0.43(-0.05) 0.05(-0.07) 0.26(-0.05) 0.15(-0.06)

Except for SGAN-eq in CIFAR10, we see that applying equality regularization in ordinary GANs
actually deteriorates the performance, proving that the role of equality regularization is different from
existing regularization. Such results also imply that equality regularization can promisingly be used
with existing regularization(e.g. spectral normalization, r1 regularization).

Summary of experiments In our experiments, RaGAN did not perform better than ordinary
GANs except for LSRaGAN which indirectly possesses equality regularization. Also, applying
input concatenation architecture in ComGAN surpassed RaGAN by significant margins in SGAN
and HingeGAN albeit it showed worse performance in LSGAN and WGAN. For comparative
samples, ComFakeGAN performed on par with ComGAN while ComSameGAN failed. With
equality regularization applied, the performance of ComGAN using input-concatenation significantly
improved, outperforming RaGAN in most cases. Applying equality regularization in RaGAN also
improved the performances demonstrated by WGAN-eq and WGAN-GP-eq which respectively
achieve the lowest FID in CIFAR10 and Tiny-ImageNet. For rf regularization, we confirmed that
WGAN-rf can be trained without difficulty. Finally, applying equality regularization in ordinary
GANs degraded the performances proving that the role of equality regularization is different from
existing regularizations. We summarized our training results in Table 8 and 9 and observed RGAN-eq
and RaGAN-eq variants show superb performance achieving the lowest FID among algorithms in
CIFAR10 experiments and Tiny-ImageNet experiments of SGAN and WGAN.

6 Conclusion and Future Work

In this work, we generalized relativistic GANs towards arbitrary architecture to enable semantic
comparison. We showed training in equivalent samples is critical for performance improvements
in relativistic GANs. The proposed methods, ComGAN and equality regularization outperformed
relativistic GANs and ordinary GANs in various losses and evaluation metrics. Theoretically, we
showed that ComGAN matches the divergences between swapped joint distributions between real
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and fake data, including RGAN. We also expressed optimal discriminators of proposed methods and
showed connections to PacGAN. In future works, we plan to employ more advanced architecture(e.g.
attentions) in ComGAN to fully exploit semantic comparisons. We also intend to analyze upon
employing multiple comparative samples in ComGAN and explore rf regularization in PacGAN
under various settings.
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A Proofs

A.1 Proof of Theorem 1

Let us express the optimal discriminator of SComGAN by D(x, y) = σ(C∗(x) − C∗(y)) where
C∗(x) = log pd(x)

pg(x)
. Observe that

Ez∼pz [−C∗(Gθ(z))] = KL(pg ‖ pd). (13)

Given D∗(x, y) = σ(C∗(x)− C∗(y)) where C∗(x) = log pd(x)
pg(x)

,

(i)

∇θLsatSComFakeGAN = 2Ex∼pg,z∼pz [∇θ log σ(C∗(x)− C∗(Gθ(z)))] (14)

= −2Ex∼pg,z∼pz [σ(C∗(Gθ(z))− C∗(x))∇θC∗(Gθ(z)))] (15)

= −2Ex∼pg,z∼pz [∇θC∗(Gθ(z)))− σ(C∗(x)− C∗(Gθ(z)))∇θC∗(Gθ(z)))] (16)

and

∇θLnonsatSComFakeGAN = −2Ex∼pg,z∼pz [∇θ log σ(C∗(Gθ(z))− C∗(x))] (17)

= −2Ex∼pg,z∼pz [σ(C∗(x)− C∗(Gθ(z)))∇θC∗(Gθ(z))]. (18)

∴ ∇θLsatSComFakeGAN +∇θLnonsatSComFakeGAN = −2Ez∼pz [∇θC∗(Gθ(z))] (19)
= 2∇θKL(pg ‖ pd) ∵ (13)

(ii)

∇θLsatSComSameGAN = 2Ez∼pz [∇θ log σ(C∗(Gθ(z))− C∗(Gθ(z)))] (20)
= −2Ez∼pz [σ(C∗(Gθ(z))− C∗(Gθ(z)))∇θC∗(Gθ(z)))] (21)
= ∇θKL(pg ‖ pd)
∇θLnonsatSComSameGAN = −2Ez∼pz [∇θ log σ(C∗(Gθ(z))− C∗(Gθ(z)))] (22)
= −2Ez∼pz [σ(C∗(Gθ(z))− C∗(Gθ(z)))∇θC∗(Gθ(z))] (23)
= ∇θKL(pg ‖ pd)

where x indicates x is constant not having gradients.

A.2 Proof of Proposition 2

Equation (6) is equal to

−
∫∫
{pd,g(x, y) + 0.5pd,d(x, y) + 0.5pg,g(x, y)} logD(x, y)+

{pg,d(x, y) + 0.5pd,d(x, y) + 0.5pg,g(x, y)} log(1−D(x, y))dxdy.

(24)

By minimizing the above equation, we obtain the following optimal discriminator:

D∗(x, y) =
pd,g(x, y) + 0.5pd,d(x, y) + 0.5pg,g(x, y)

pd,d(x, y) + pd,g(x, y) + pg,d(x, y) + pg,g(x, y)
(25)

=
pd,g(x, y) + 0.5pd,d(x, y) + 0.5pg,g(x, y)

(pd(x) + pg(x))(pd(y) + pg(y))
. (26)

By expressing D∗(x, y) with respect to D∗(x) = pd(x)
pd(x)+pg(x)

, it is equal to

= D∗(x)(1−D∗(y)) + 0.5D∗(x)D∗(y) + 0.5(1−D∗(x))(1−D∗(y)) (27)
= 0.5 + 0.5(D∗(x)−D∗(y)).

Meanwhile, the objective of LSComGAN-eq in (7) is∫∫
pd,g(x, y)(D(x, y)− 1)2 + pg,d(x, y)(D(x, y) + 1)2+

pd,d(x, y)D(x, y)2 + pg,gD(x, y)2dxdy.

(28)
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where D∗(x, y) is given by

D∗(x, y) =
pd,g(x, y)− pg,d(x, y)

(pd(x) + pg(x))(pd(y) + pg(y))
. (29)

By expressing D∗(x, y) with respect to LSGAN optimal discriminator D∗(x) =
pd(x)−pg(x)
pd(x)+pg(x)

, it is
equal to

= 0.5(D∗(x)−D∗(y)).

A.3 Proof of Proposition 3

In SPacGAN-n, the optimal discriminator is given by

D∗(x1 . . . xn) =
pnd (x1 . . . xn)

pnd (x1 . . . xn) + png (x1 . . . xn)
(30)

= σ

(
log

pnd (x1 . . . xn)

png (x1 . . . xn)

)
= σ

(
n∑
i=1

log
pd(xi)

pg(xi)

)
. (31)

Since C∗(x) = log pd(x)
pg(x)

, we conclude the proof.

A.4 Proof of Proposition 4

By minimizing the equation (9) expressed by

−
∫∫
{pd,d(x, y) + 0.5pd,g(x, y) + 0.5pg,d(x, y)} logD(x, y)+

{pg,g(x, y) + 0.5pd,g(x, y) + 0.5pg,d(x, y)} log(1−D(x, y))dxdy,

(32)

we obtain the optimal discriminator as

D∗(x, y) =
pd,d(x, y) + 0.5pd,g(x, y) + 0.5pg,d(x, y)

pd,d(x, y) + pd,g(x, y) + pg,d(x, y) + pg,g(x, y)
(33)

=
pd,d(x, y) + 0.5pd,g(x, y) + 0.5pg,d(x, y)

(pd(x) + pg(x))(pd(y) + pg(y))
. (34)

By expressing D∗(x, y) with respect to D∗(x) = pd(x)
pd(x)+pg(x)

, it is equal to

= D∗(x)D∗(y) + 0.5D∗(x)(1−D∗(y)) + 0.5(1−D∗(x))D∗(y) (35)
= 0.5(D∗(x) +D∗(y)).

Meanwhile, the objective of LSPacGAN-rf in (10) is∫∫
pd,d(x, y)(D(x, y)− 1)2 + pg,g(x, y)(D(x, y) + 1)2+

pd,g(x, y)D(x, y)2 + pg,dD(x, y)2dxdy,

(36)

where D∗(x, y) is given by

D∗(x, y) =
pd,d(x, y)− pg,g(x, y)

(pd(x) + pg(x))(pd(y) + pg(y))
. (37)

By expressing D∗(x, y) with respect to LSGAN optimal discriminator D∗(x) =
pd(x)−pg(x)
pd(x)+pg(x)

, it is
equal to

= 0.5(D∗(x) +D∗(y)).
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B Connection to LeCam divergence

Let us define the discriminator objective as follows:

LD = Ex∼pg [φ(x)]− Ex∼pd [φ(x)] + λEx∼pd [‖φ(x)− Ex∼pd [φ(x)]‖2]

+ λEx∼pg [‖φ(x)− Ez∼pz [φ(G(z))]‖2].
(38)

(38) is similar to WGAN-eq except that it does not train the discriminator with respect toEx∼pd [φ(x)]

and Ez∼pz [φ(G(z))]. From now on, we let αr = Ex∼pd [φ(x)] and αf = Ez∼pz [φ(G(z))].

Proposition 5. In case that αr = −αf , the generator objective defined by LG = Ex∼pd [φ∗(x)]−
Ex∼pg [φ∗(x)] is equal to ( 1

2λ +αr)∆(pd ‖ pg) under the optimal discriminator φ∗(x) of (38), where
∆(P ‖ Q) is LeCam divergence[19] given by∫

(P (x)−Q(x))2

P (x) +Q(x)
dx.

Proof.

Note that LD in (38) can be re-expressed by

LD =Ex∼pd [λ‖φ(x)− αr‖2 − φ(x)] + Ex∼pg [λ‖φ(x) + αr‖2 + φ(x)] (39)

=Ex∼pd [λ‖φ(x)− αr‖2 − φ(x) + αr +
1

4λ
]+

Ex∼pg [λ‖φ(x) + αr‖2 + φ(x) + αr +
1

4λ
] + C

(40)

=λ

∫
pd(x)(φ(x)− αr −

1

2λ
)2 + pg(x)(φ(x) + αr +

1

2λ
)2dx+ C (41)

where C = 2αr − 1
2λ . By maximizing the above equation, we obtain the optimal φ∗ as

φ∗(x) =
( 1
2λ + αr)(pd(x)− pg(x))

pd(x) + pg(x)
∵
dLD
dφ

= 0. (42)

By substituting φ∗ in the generator objective,

LG =

∫
pd(x)φ∗(x)− pg(x)φ∗(x)dx (43)

= (
1

2λ
+ αr)

∫
(pd(x)− pg(x))2

pd(x) + pg(x)
dx (44)

= (
1

2λ
+ αr)∆(pd ‖ pg)
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C Training losses

C.1 SGAN

LsatD = Ex∼pd [− logD(x)] + Ex∼pz [− log(1−D(G(z)))]

LsatG = Ex∼pd [logD(x)] + Ex∼pz [log(1−D(G(z)))] (Not used)

LnonsatG = Ex∼pd [− log(1−D(x))] + Ex∼pz [− logD(G(z))]

where f1 = log(1 + e−x), f2 = log(1 + ex), and A = σ.

C.2 LSGAN

LD = Ex∼pd [(D(x)− 1)2] + Ex∼pz [(D(G(z)) + 1)2]

G = Ex∼pd [(D(x) + 1)2] + Ex∼pz [(D(G(z))− 1)2]

where f1 = (x− 1)2, f2 = (x+ 1)2, g1 = f2, g2 = f1, and A = I .

C.3 HingeGAN

LD = Ex∼pd [max(0, 1−D(x))] + Ex∼pz [max(0, 1 +D(G(z)))]

LG = Ex∼pd [D(x)]− Ex∼pz [D(G(z))]

where f1 = max(0, 1− x), f2 = max(0, 1 + x), g1 = I , g2 = −I , and A = I .

C.4 WGAN

LD = Ex∼pd [−D(x)] + Ex∼pz [D(G(z))]

LG = Ex∼pd [D(x)]− Ex∼pz [D(G(z))]

where f1 = −I , f2 = I , g1 = I , g2 = −I , and A = I .

RGAN, RaGAN, ComGAN, and PacGAN are defined as described in previous sections.

D Supplementary plots

(a) SRaGAN(C) (b) HingeRaGAN(C) (c) SRaGAN(T)

Figure 3: FID curves of RaGAN(orange) and ordinary GAN(blue). (C) and (T) denotes CIFAR10
and Tiny-ImageNet(We did not include experiments of HingeRaGAN in Tiny-ImageNet since it was
trained for much fewer iterations(20k)).
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E Performance tables

Table 8: Comprehensive training results in CIFAR10 dataset[15]. We report the best FID and
Inception Score during training averaged by 4 runs and Precision/Recall and Density/Coverage
metrics at the best FID with their standard deviations. ComGAN denotes ComGAN using input
concatenation architecture and FakeGAN and SameGAN denote ComFakeGAN and ComSameGAN
using input concatenation architecture respectively.

Algorithms FID ↓ IS ↑ Precision ↑ Recall ↑ Density ↑ Coverage ↑
(training steps: 100k)
SGAN 50.65(±4.65) 6.73(±0.34) 0.60(±0.03) 0.29(±0.03) 0.46(±0.04) 0.37(±0.04)
SComGAN 46.56(±2.31) 6.82(±0.19) 0.60(±0.03) 0.32(±0.03) 0.45(±0.04) 0.38(±0.01)
SComGAN-eq 45.71(±7.52) 6.61(±0.36) 0.64(±0.02) 0.42(±0.07) 0.53(±0.04) 0.38(±0.05)
SFakeGAN 45.55(±4.53) 6.57(±0.33) 0.63(±0.03) 0.33(±0.03) 0.51(±0.05) 0.39(±0.05)
SFakeGAN-eq 40.18(±1.80) 6.62(±0.11) 0.64(±0.01) 0.46(±0.02) 0.53(±0.03) 0.42(±0.02)
SSameGAN 246.58(±61.19) 2.42(±0.50) 0.47(±0.21) 0.00(±0.00) 0.28(±0.22) 0.02(±0.02)
SRGAN 57.28(±3.95) 6.32(±0.11) 0.59(±0.01) 0.26(±0.04) 0.48(±0.03) 0.30(±0.03)
SRGAN-eq 32.73(±1.53) 7.34(±0.07) 0.63(±0.02) 0.54(±0.02) 0.53(±0.04) 0.48(±0.03)
SRaGAN 58.99(±5.76) 6.28(±0.35) 0.57(±0.07) 0.24(±0.03) 0.42(±0.12) 0.27(±0.05)
SRaGAN-eq 32.76(±0.24) 7.52(±0.14) 0.62(±0.01) 0.56(±0.03) 0.52(±0.04) 0.48(±0.02)

(training steps: 100k)
LSGAN 47.95(±17.71) 6.71(±0.57) 0.62(±0.01) 0.38(±0.15) 0.48(±0.04) 0.39(±0.11)
LSComGAN 76.03(±29.71) 5.14(±1.27) 0.65(±0.05) 0.22(±0.19) 0.51(±0.09) 0.25(±0.13)
LSComGAN-eq 37.62(±1.82) 6.87(±0.14) 0.65(±0.01) 0.46(±0.03) 0.56(±0.01) 0.46(±0.02)
LSFakeGAN 35.45(±1.98) 7.09(±0.15) 0.64(±0.01) 0.48(±0.02) 0.54(±0.01) 0.49(±0.04)
LSFakeGAN-eq 37.15(±1.80) 6.88(±0.16) 0.64(±0.01) 0.50(±0.01) 0.55(±0.02) 0.45(±0.02)
LSSameGAN 201.97(±13.76) 2.92(±0.39) 0.57(±0.20) 0.00(±0.00) 0.39(±0.27) 0.03(±0.01)
LSRaGAN 34.15(±1.36) 7.55(±0.15) 0.63(±0.02) 0.51(±0.01) 0.54(±0.04) 0.50(±0.02)
LSRaGAN-eq 31.16(±0.76) 7.64(±0.13) 0.62(±0.01) 0.58(±0.02) 0.55(±0.02) 0.52(±0.01)

(training steps: 50k)
HingeGAN 37.33(±1.83) 7.18(±0.26) 0.67(±0.02) 0.33(±0.01) 0.64(±0.05) 0.49(±0.02)
HingeComGAN 37.28(±2.29) 7.46(±0.15) 0.65(±0.03) 0.34(±0.03) 0.62(±0.07) 0.49(±0.02)
HingeComGAN-eq 28.85(±1.66) 7.57(±0.12) 0.63(±0.02) 0.55(±0.01) 0.54(±0.04) 0.53(±0.03)
HingeFakeGAN 36.24(±1.72) 7.42(±0.07) 0.63(±0.02) 0.36(±0.03) 0.56(±0.05) 0.48(±0.01)
HingeFakeGAN-eq 28.69(±1.00) 7.55(±0.15) 0.65(±0.00) 0.55(±0.01) 0.58(±0.01) 0.55(±0.01)
HingeSameGAN 96.97(±28.97) 4.62(±1.06) 0.63(±0.05) 0.07(±0.10) 0.47(±0.08) 0.17(±0.10)
HingeRaGAN 46.31(±2.23) 7.23(±0.19) 0.61(±0.04) 0.33(±0.01) 0.51(±0.09) 0.38(±0.04)
HingeRaGAN-eq 25.06(±0.71) 7.93(±0.1) 0.66(±0.02) 0.57(±0.01) 0.64(±0.03) 0.61(±0.01)

(training steps: 50k)
WGAN-GP 33.20(±5.91) 7.07(±0.40) 0.63(±0.01) 0.57(±0.05) 0.54(±0.03) 0.49(±0.07)
WGAN-GP-eq 26.96(±0.76) 7.76(±0.12) 0.65(±0.01) 0.60(±0.01) 0.59(±0.01) 0.57(±0.02)
WGAN-eq 24.86(±0.69) 7.90(±0.12) 0.65(±0.01) 0.58(±0.01) 0.62(±0.02) 0.62(±0.01)
WGAN-rf 46.46(±2.25) 6.54(±0.20) 0.61(±0.02) 0.29(±0.01) 0.48(±0.03) 0.35(±0.03)
WComGAN-GP 79.19(±5.49) 3.96(±0.22) 0.69(±0.04) 0.09(±0.02) 0.60(±0.07) 0.19(±0.02)
WComGAN-GP-eq7 56.71(±37.28) 6.00(±1.66) 0.64(±0.06) 0.36(±0.21) 0.54(±0.08) 0.37(±0.15)
WComGAN-eq 34.92(±1.01) 7.14(±0.10) 0.61(±0.01) 0.48(±0.01) 0.50(±0.03) 0.47(±0.00)
WFakeGAN-GP 75.55(±5.44) 4.20(±0.19) 0.67(±0.02) 0.12(±0.03) 0.55(±0.05) 0.21(±0.02)
WSameGAN-GP8 338.58(±71.10) 1.57(±0.46) 0.56(±0.21) 0.00(±0.00) 0.15(±0.06) 0.00(±0.01)

7terminated at 32k step
8intentionally terminated at 12k step due to poor performance.
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Table 9: Comprehensive training results in Tiny-ImageNet dataset[18]. We report the best FID
and Inception Score during training averaged by 4 runs and Precision/Recall and Density/Coverage
metrics at the best FID with their standard deviations. ComGAN denotes ComGAN using input
concatenation architecture and FakeGAN and SameGAN denote ComFakeGAN and ComSameGAN
using input concatenation architecture respectively.

Algorithms FID ↓ IS ↑ Precision ↑ Recall ↑ Density ↑ Coverage ↑
(training steps: 60k)
SGAN 76.94(±3.45) 6.99(±0.24) 0.49(±0.02) 0.11(±0.03) 0.33(±0.04) 0.22(±0.01)
SComGAN 75.20(±2.07) 7.57(±0.38) 0.43(±0.04) 0.13(±0.01) 0.25(±0.05) 0.20(±0.02)
SComGAN-eq 77.74(±5.49) 7.05(±0.27) 0.49(±0.06) 0.15 (±0.04) 0.33(±0.08) 0.21(±0.04)
SFakeGAN 80.43(±5.57) 6.97(±0.40) 0.44(±0.05) 0.13(±0.02) 0.27(±0.04) 0.20(±0.02)
SSameGAN 230.53(±6.10) 3.20(±0.26) 0.39(±0.29) 0.00 (±0.00) 0.20(±0.23) 0.01(±0.00)
SRGAN 101.32(±2.52) 6.38(±0.23) 0.39(±0.02) 0.03(±0.01) 0.21(±0.03) 0.14(±0.01)
SRGAN-eq 72.24(±0.73) 6.78(±0.11) 0.54(±0.01) 0.18(±0.01) 0.39(±0.03) 0.23(±0.00)
SRaGAN 87.13(±3.17) 6.70(±0.25) 0.42(±0.05) 0.07(±0.01) 0.22(±0.05) 0.17(±0.01)
SRaGAN-eq 69.06(±3.63) 7.17(±0.32) 0.56(±0.02) 0.20(±0.04) 0.38(±0.03) 0.25(±0.02)

(training steps: 60k)
LSGAN 77.91(±2.67) 6.73(±0.19) 0.46(±0.02) 0.13(±0.02) 0.28(±0.03) 0.21(±0.02)
LSComGAN 82.58(±6.03) 6.93(±0.60) 0.45(±0.04) 0.11(±0.02) 0.28(±0.03) 0.19(±0.02)
LSComGAN-eq 70.34(±4.87) 7.47(±0.34) 0.51(±0.02) 0.20(±0.05) 0.33(±0.03) 0.24(±0.02)
LSFakeGAN 78.63(±5.58) 6.86(±0.53) 0.49(±0.06) 0.10(±0.02) 0.33(±0.07) 0.21(±0.04)
LSRaGAN 73.70(±4.29) 6.99(±0.29) 0.52(±0.03) 0.18(±0.01) 0.36(±0.04) 0.23(±0.02)
LSRaGAN-eq 74.29(±3.40) 6.87(±0.27) 0.52(±0.03) 0.16(±0.03) 0.33(±0.03) 0.22(±0.01)

(training steps: 20k)
HingeGAN 78.46(±2.02) 7.05(±0.30) 0.48(±0.06) 0.12(±0.03) 0.31(±0.06) 0.21(±0.01)
HingeComGAN 85.45(±8.72) 6.63(±0.42) 0.43(±0.03) 0.09(±0.03) 0.26(±0.05) 0.18(±0.02)
HingeComGAN-eq 78.70(±2.09) 6.54(±0.21) 0.47(±0.02) 0.12(±0.02) 0.28(±0.03) 0.20(±0.01)
HingeFakeGAN 82.89(±4.74) 6.70(±0.49) 0.47(±0.03) 0.09(±0.02) 0.29(±0.04) 0.20(±0.01)
HingeRaGAN 96.38(±5.87) 6.05(±0.26) 0.52(±0.08) 0.04(±0.02) 0.35(±0.12) 0.17(±0.03)
HingeRaGAN-eq 82.80(±2.84) 6.10(±0.13) 0.50(±0.05) 0.13(±0.01) 0.30(±0.04) 0.20(±0.01)

(training steps: 20k)
WGAN-GP 62.96(±1.78) 7.56(±0.21) 0.47(±0.01) 0.29(±0.02) 0.29(±0.01) 0.25(±0.01)
WGAN-GP-eq9 57.18(±1.93) 8.23(±0.10) 0.49(±0.01) 0.38(±0.02) 0.32(±0.01) 0.29(±0.01)
WGAN-eq 85.72(±1.18) 6.04(±0.06) 0.51(±0.01) 0.11(±0.02) 0.31(±0.01) 0.19(±0.00)
WGAN-rf 106.27(±4.45) 5.65(±0.20) 0.41(±0.10) 0.03(±0.01) 0.24(±0.10) 0.13(±0.02)
WComGAN-GP 154.41(±28.23) 3.49(±0.55) 0.32(±0.04) 0.01(±0.01) 0.12(±0.03) 0.06(±0.02)
WComGAN-GP-eq 106.64(±6.38) 5.04(±0.35) 0.33(±0.07) 0.05(±0.02) 0.16(±0.05) 0.11(±0.02)
WComGAN-eq 105.58(±4.02) 5.52(±0.31) 0.35(±0.05) 0.03(±0.02) 0.18(±0.05) 0.12(±0.01)
WFakeGAN-GP 169.11(±23.83) 3.34(±0.22) 0.25(±0.11) 0.00(±0.00) 0.10(±0.05) 0.05(±0.02)

9terminated at 18k step
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